Note that tol = .Machine$double.eps unless overwritten.
Arguments
- x
either a 3x3 contingency table or 3-vector with counts (
n1,n2,n3) wheren1 = sum(diag(x)),n2 = x[1L, 3L] + x[3L, 1L],n3 = sum(x) - n1 - n2- use_mpfr
whether to use
Rmpfr::optimizeR()] for arbitrary precision- ...
passed on to
optimise()or toRmpfr::optimizeRifuse_mpfr = TRUE
Examples
tab1 <- matrix(c(1000, 10, 2, 12, 100, 8, 1, 7, 200), nrow = 3)
tab1
#> [,1] [,2] [,3]
#> [1,] 1000 12 1
#> [2,] 10 100 7
#> [3,] 2 8 200
estimate_w(tab1)
#> [1] 0.008154441
n1 <- sum(diag(tab1))
n2 <- tab1[1L, 3L] + tab1[3L, 1L]
n3 <- sum(tab1) - n1 - n2
estimate_w(c(n1, n2, n3))
#> [1] 0.008154441
tab2 <- structure(c(40000L, 30L, 5L, 15L, 400L, 2L, 5L, 5L, 350L),
dim = c(3L, 3L), class = "table")
tab2
#> [,1] [,2] [,3]
#> [1,] 40000 15 5
#> [2,] 30 400 5
#> [3,] 5 2 350
estimate_w(tab2)
#> [1] 0.0004414364
estimate_w(tab2, use_mpfr = TRUE)
#> 1 'mpfr' number of precision 132 bits
#> [1] 0.00044143635878284077344503195817562240248647