Calculate WoE for a profile for sample-specific error probabilities integrated over the donor prior distribution using Monte Carlo integration
Source:R/LR-integrate.R
calc_WoE_wTwR_integrate_wT_mc.RdNote that this is the expected value of log10 of $LR$ under a prior of $w_t$.
An alternative is implemented in calc_WoE_wTwR_integrate_wT_mc_markerwise()
where a WoE for each marker is calculated by integrating over the prior of $w_t$
separately under $H_1$ and $H_2$.
Arguments
- xT
profile from case (of 0, 1, 2)
- xR
profile from suspect (of 0, 1, 2)
- shape1T
wThas beta prior on (0, 0.5) with parametersshape1Tandshape2T- shape2T
see
shape1T_Hp- wR
error probability for PoI sample
- p
list of genotype probabilities (same length as
xT/xR, or vector of length 3 for reuse)- n_samples
number of random samples from each prior distribution
Examples
calc_LRs_wTwR(xT = c(0, 0), xR = c(0, 1), wT = 1e-2, wR = 1e-5, p = c(0.25, 0.25, 0.5)) |> log10() |> sum()
#> [1] -0.7995914
shpT <- get_beta_parameters(mu = 1e-2, sigmasq = 1e-7, a = 0, b = 0.5)
# curve(dbeta05(x, shpT[1], shpT[2]), from = 0, to = 0.1, n = 1001)
z1 <- calc_WoE_wTwR_integrate_wT_mc(
xT = c(0, 0),
xR = c(0, 1),
shape1T = shpT[1], shape2T = shpT[2],
wR = 1e-5,
p = c(0.25, 0.25, 0.5),
n_samples = 1000)
z1$WoE
#> [1] -0.7995317
z1$WoEs; sum(z1$WoEs)
#> [1] 0.5976002 -1.3971319
#> [1] -0.7995317
z2 <- calc_WoE_wTwR_integrate_wT_num(
xT = c(0, 0),
xR = c(0, 1),
shape1T = shpT[1], shape2T = shpT[2],
wR = 1e-5,
p = c(0.25, 0.25, 0.5))
z2$WoE
#> [1] -0.7998079
z2$WoEs; sum(z2$WoEs)
#> [1] 0.597603 -1.397411
#> [1] -0.7998079