Sample cases under Hp for sample-dependent error probabilities, $w_D$ and $w_S$
Source:R/simulate.R
sample_data_Hp_wDwS.Rd
Same latent genotype, Z, with independent errors for true donor (D) and suspect (S).
Arguments
- n
number of samples
- wD
error probability for donor sample
- wS
error probability for PoI sample
- p
list of genotype probabilities (length is number of loci) or vector of length 3 for single locus
- ...
Passed on to
add_errors_to_genotypes()
Value
list of two matrices, each of size n x loci with genotype in 0/1/2 format resembling the situation in real life.
Examples
sample_data_Hp_wDwS(n = 10, wD = 0.3, wS = 1e-6, p = c(0.25, 0.25, 0.5))
#> $X_D
#> [,1]
#> [1,] 1
#> [2,] 1
#> [3,] 1
#> [4,] 0
#> [5,] 1
#> [6,] 1
#> [7,] 2
#> [8,] 1
#> [9,] 1
#> [10,] 1
#>
#> $X_S
#> [,1]
#> [1,] 2
#> [2,] 1
#> [3,] 1
#> [4,] 1
#> [5,] 0
#> [6,] 2
#> [7,] 2
#> [8,] 2
#> [9,] 0
#> [10,] 0
#>
sample_data_Hp_wDwS(n = 10, wD = 0.3, wS = 1e-6, p = list(
c(0.25, 0.25, 0.5), c(0.1, 0.8, 0.1)))
#> $X_D
#> [,1] [,2]
#> [1,] 2 2
#> [2,] 1 0
#> [3,] 0 0
#> [4,] 1 1
#> [5,] 1 1
#> [6,] 2 1
#> [7,] 1 1
#> [8,] 1 1
#> [9,] 2 0
#> [10,] 2 1
#>
#> $X_S
#> [,1] [,2]
#> [1,] 2 1
#> [2,] 2 1
#> [3,] 0 1
#> [4,] 0 1
#> [5,] 1 1
#> [6,] 2 1
#> [7,] 2 1
#> [8,] 2 1
#> [9,] 2 1
#> [10,] 2 1
#>
cases <- sample_data_Hp_wDwS(n = 1000, wD = 0, wS = 0, p = c(0.25, 0.25, 0.5))
table(X_D = cases$X_D, X_S = cases$X_S)
#> X_S
#> X_D 0 1 2
#> 0 238 0 0
#> 1 0 244 0
#> 2 0 0 518
cases <- sample_data_Hp_wDwS(n = 1000, wD = 0.1, wS = 0, p = c(0.25, 0.25, 0.5))
table(X_D = cases$X_D, X_S = cases$X_S)
#> X_S
#> X_D 0 1 2
#> 0 218 20 3
#> 1 39 224 85
#> 2 4 15 392
cases <- sample_data_Hp_wDwS(n = 1000, wD = 0, wS = 0.1, p = c(0.25, 0.25, 0.5))
table(X_D = cases$X_D, X_S = cases$X_S)
#> X_S
#> X_D 0 1 2
#> 0 192 47 3
#> 1 16 216 23
#> 2 7 100 396
cases <- sample_data_Hp_wDwS(n = 1000, wD = 1e-1, wS = 1e-8, p = c(0.25, 0.25, 0.5))
tab <- table(X_D = cases$X_D, X_S = cases$X_S)
tab
#> X_S
#> X_D 0 1 2
#> 0 201 23 4
#> 1 42 184 93
#> 2 0 26 427
estimate_w(tab)
#> [1] 0.05340395
cases <- sample_data_Hp_wDwS(n = 1000, wD = 0, wS = 0, p = c(0.1, 0.7, 0.2))
tab <- table(X_D = cases$X_D, X_S = cases$X_S)
diag(tab/sum(tab))
#> 0 1 2
#> 0.088 0.693 0.219