Skip to contents

Calculate WoE for sample-specific error probabilities using profile likelihood using numerical optimisation

Usage

calc_WoE_wTwR_profilemax_wT_num(xT, xR, wR, p)

Arguments

xT

profile from case (of 0, 1, 2)

xR

profile from suspect (of 0, 1, 2)

wR

error probability for PoI sample

p

list of genotype probabilities (same length as xT/xR, or vector of length 3 for reuse)

Examples

calc_LRs_wTwR(xT = c(0, 0), xR = c(0, 1), wT = 1e-2, wR = 1e-5, p = c(0.25, 0.25, 0.5)) |> log10() |> sum()
#> [1] -0.7995914

calc_WoE_wTwR_profilemax_wT_num(
  xT = c(0, 0), 
  xR = c(0, 1), 
  wR = 1e-5, 
  p = c(0.25, 0.25, 0.5))
#> $wT_H1
#> [1] 0.2499892
#> 
#> $wT_H2
#> [1] 0.5
#> 
#> $log10PrE_H1
#> [1] -2.18098
#> 
#> $log10PrE_H2
#> [1] -2.408227
#> 
#> $WoE
#> [1] 0.2272467
#> 

shpT <- get_beta_parameters(mu = 1e-2, sigmasq = 1e-7, a = 0, b = 0.5)
# curve(dbeta05(x, shpT[1], shpT[2]), from = 0, to = 0.1, n = 1001)
calc_WoE_wTwR_integrate_wT_mc(
  xT = c(0, 0), 
  xR = c(0, 1), 
  shape1T = shpT[1], shape2T = shpT[2],
  wR = 1e-5, 
  p = c(0.25, 0.25, 0.5),
  n_samples = 1000)
#> $WoE
#> [1] -0.7995725
#> 
#> $WoEs
#> [1]  0.5976007 -1.3971731
#> 
  
calc_WoE_wTwR_integrate_wT_num(
  xT = c(0, 0), 
  xR = c(0, 1), 
  shape1T = shpT[1], shape2T = shpT[2], 
  wR = 1e-5, 
  p = c(0.25, 0.25, 0.5))
#> $WoE
#> [1] -0.7998079
#> 
#> $WoEs
#> [1]  0.597603 -1.397411
#>