Sample cases under Hp for sample-dependent error probabilities, $w_t$ and $w_r$
Source:R/simulate.R
sample_data_Hp_wTwR.RdSame latent genotype, Z, with independent errors for true donor (D) and suspect (S).
Arguments
- n
number of samples
- wT
error probability for donor sample
- wR
error probability for PoI sample
- p
list of genotype probabilities (length is number of loci) or vector of length 3 for single locus
- ...
Passed on to
add_errors_to_genotypes()
Value
list of two matrices, each of size n x loci with genotype in 0/1/2 format resembling the situation in real life.
Examples
sample_data_Hp_wTwR(n = 10, wT = 0.3, wR = 1e-6, p = c(0.25, 0.25, 0.5))
#> $xT
#> [,1]
#> [1,] 0
#> [2,] 0
#> [3,] 1
#> [4,] 0
#> [5,] 2
#> [6,] 2
#> [7,] 2
#> [8,] 2
#> [9,] 2
#> [10,] 2
#>
#> $xR
#> [,1]
#> [1,] 0
#> [2,] 0
#> [3,] 2
#> [4,] 0
#> [5,] 2
#> [6,] 2
#> [7,] 2
#> [8,] 2
#> [9,] 2
#> [10,] 2
#>
sample_data_Hp_wTwR(n = 10, wT = 0.3, wR = 1e-6, p = list(
c(0.25, 0.25, 0.5), c(0.1, 0.8, 0.1)))
#> $xT
#> [,1] [,2]
#> [1,] 1 1
#> [2,] 2 1
#> [3,] 2 0
#> [4,] 1 1
#> [5,] 2 1
#> [6,] 2 1
#> [7,] 2 1
#> [8,] 1 0
#> [9,] 2 1
#> [10,] 1 2
#>
#> $xR
#> [,1] [,2]
#> [1,] 0 1
#> [2,] 2 1
#> [3,] 2 1
#> [4,] 1 1
#> [5,] 2 0
#> [6,] 1 0
#> [7,] 1 1
#> [8,] 2 1
#> [9,] 2 2
#> [10,] 0 0
#>
cases <- sample_data_Hp_wTwR(n = 1000, wT = 0, wR = 0, p = c(0.25, 0.25, 0.5))
table(xT = cases$xT, xR = cases$xR)
#> xR
#> xT 0 1 2
#> 0 245 0 0
#> 1 0 259 0
#> 2 0 0 496
cases <- sample_data_Hp_wTwR(n = 1000, wT = 0.1, wR = 0, p = c(0.25, 0.25, 0.5))
table(xT = cases$xT, xR = cases$xR)
#> xR
#> xT 0 1 2
#> 0 206 24 6
#> 1 47 207 91
#> 2 6 26 387
cases <- sample_data_Hp_wTwR(n = 1000, wT = 0, wR = 0.1, p = c(0.25, 0.25, 0.5))
table(xT = cases$xT, xR = cases$xR)
#> xR
#> xT 0 1 2
#> 0 169 46 2
#> 1 24 200 30
#> 2 5 103 421
cases <- sample_data_Hp_wTwR(n = 1000, wT = 1e-1, wR = 1e-8, p = c(0.25, 0.25, 0.5))
tab <- table(xT = cases$xT, xR = cases$xR)
tab
#> xR
#> xT 0 1 2
#> 0 206 26 4
#> 1 48 204 83
#> 2 5 29 395
estimate_w(tab)
#> [1] 0.05718963
cases <- sample_data_Hp_wTwR(n = 1000, wT = 0, wR = 0, p = c(0.1, 0.7, 0.2))
tab <- table(xT = cases$xT, xR = cases$xR)
diag(tab/sum(tab))
#> 0 1 2
#> 0.110 0.691 0.199