Sample cases under Hp for sample-dependent error probabilities, $w_t$ and $w_r$
Source:R/simulate.R
sample_data_Hp_wTwR.Rd
Same latent genotype, Z, with independent errors for true donor (D) and suspect (S).
Arguments
- n
number of samples
- wT
error probability for donor sample
- wR
error probability for PoI sample
- p
list of genotype probabilities (length is number of loci) or vector of length 3 for single locus
- ...
Passed on to
add_errors_to_genotypes()
Value
list of two matrices, each of size n x loci with genotype in 0/1/2 format resembling the situation in real life.
Examples
sample_data_Hp_wTwR(n = 10, wT = 0.3, wR = 1e-6, p = c(0.25, 0.25, 0.5))
#> $xT
#> [,1]
#> [1,] 0
#> [2,] 1
#> [3,] 1
#> [4,] 1
#> [5,] 1
#> [6,] 0
#> [7,] 1
#> [8,] 2
#> [9,] 1
#> [10,] 1
#>
#> $xR
#> [,1]
#> [1,] 2
#> [2,] 1
#> [3,] 2
#> [4,] 1
#> [5,] 2
#> [6,] 0
#> [7,] 1
#> [8,] 2
#> [9,] 0
#> [10,] 2
#>
sample_data_Hp_wTwR(n = 10, wT = 0.3, wR = 1e-6, p = list(
c(0.25, 0.25, 0.5), c(0.1, 0.8, 0.1)))
#> $xT
#> [,1] [,2]
#> [1,] 1 0
#> [2,] 2 1
#> [3,] 1 1
#> [4,] 0 2
#> [5,] 1 1
#> [6,] 0 1
#> [7,] 2 2
#> [8,] 2 2
#> [9,] 0 0
#> [10,] 2 1
#>
#> $xR
#> [,1] [,2]
#> [1,] 1 0
#> [2,] 2 1
#> [3,] 1 1
#> [4,] 0 1
#> [5,] 2 2
#> [6,] 0 1
#> [7,] 2 1
#> [8,] 2 1
#> [9,] 0 1
#> [10,] 2 1
#>
cases <- sample_data_Hp_wTwR(n = 1000, wT = 0, wR = 0, p = c(0.25, 0.25, 0.5))
table(xT = cases$xT, xR = cases$xR)
#> xR
#> xT 0 1 2
#> 0 253 0 0
#> 1 0 239 0
#> 2 0 0 508
cases <- sample_data_Hp_wTwR(n = 1000, wT = 0.1, wR = 0, p = c(0.25, 0.25, 0.5))
table(xT = cases$xT, xR = cases$xR)
#> xR
#> xT 0 1 2
#> 0 178 31 2
#> 1 41 218 93
#> 2 3 20 414
cases <- sample_data_Hp_wTwR(n = 1000, wT = 0, wR = 0.1, p = c(0.25, 0.25, 0.5))
table(xT = cases$xT, xR = cases$xR)
#> xR
#> xT 0 1 2
#> 0 197 42 2
#> 1 18 229 24
#> 2 4 95 389
cases <- sample_data_Hp_wTwR(n = 1000, wT = 1e-1, wR = 1e-8, p = c(0.25, 0.25, 0.5))
tab <- table(xT = cases$xT, xR = cases$xR)
tab
#> xR
#> xT 0 1 2
#> 0 203 19 3
#> 1 54 202 100
#> 2 3 25 391
estimate_w(tab)
#> [1] 0.05907991
cases <- sample_data_Hp_wTwR(n = 1000, wT = 0, wR = 0, p = c(0.1, 0.7, 0.2))
tab <- table(xT = cases$xT, xR = cases$xR)
diag(tab/sum(tab))
#> 0 1 2
#> 0.100 0.686 0.214